首页> 外文OA文献 >Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers
【2h】

Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

机译:用maTLaB求解多块可分凸的最小化问题   乘数的双块交替方向法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider solving multiple-block separable convexminimization problems using alternating direction method of multipliers (ADMM).Motivated by the fact that the existing convergence theory for ADMM is mostlylimited to the two-block case, we analyze in this paper, both theoretically andnumerically, a new strategy that first transforms a multi-block problem into anequivalent two-block problem (either in the primal domain or in the dualdomain) and then solves it using the standard two-block ADMM. In particular, wederive convergence results for this two-block ADMM approach to solvemulti-block separable convex minimization problems, including an improvedO(1/\epsilon) iteration complexity result. Moreover, we compare the numericalefficiency of this approach with the standard multi-block ADMM on severalseparable convex minimization problems which include basis pursuit, robustprincipal component analysis and latent variable Gaussian graphical modelselection. The numerical results show that the multiple-block ADMM, althoughlacks theoretical convergence guarantees, typically outperforms two-blockADMMs.
机译:本文考虑采用乘积交替方向法(ADMM)解决多块可分凸最小化问题。基于现有的ADMM收敛理论主要限于两块情况的事实,本文进行了分析,从理论上和数值上讲,一种新的策略首先将多块问题转换为等效的两块问题(在原始域或在双域中),然后使用标准的两块ADMM解决。特别是,此两块式ADMM方法解决了多块可分离的凸极小化问题的迭代收敛结果,包括改进的O(1 / \ epsilon)迭代复杂度结果。此外,我们将这种方法与标准多块ADMM的数值效率在几个可分离的凸极小化问题上进行了比较,这些问题包括基本追踪,鲁棒的主成分分析和潜在变量高斯图形模型选择。数值结果表明,尽管缺乏理论上的收敛保证,但多块ADMM的性能通常优于两块ADMM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号